THE CONDITIONAL STABILITY AND AN ITERATIVE REGULARIZATION METHOD FOR A FRACTIONAL INVERSE ELLIPTIC PROBLEM OF TRICOMI-GELLERSTEDT-KELDYSH TYPE

Author:

Djemoui Sebti1ORCID,Meziani Mohamed S. E.2,Boussetila Nadjib3

Affiliation:

1. Higher School of industrial Technologies Annaba, P.O.Box 218, Safsaf, 23000 Annaba, Algeria

2. Department of Mathematics, ENSET Skikda, frères Bouceta, Azzaba, 21001 Skikda, Algeria

3. Department of Mathematics, University 8 Mai 1945, P.O.Box 401, 24000 Guelma, Algeria

Abstract

The present paper is devoted to identifying an inaccessible boundary condition for a fractional elliptic problem of Tricomi-Gellerstedt-Keldysh-type. Using the expansion Fourier method, the considered problem can be reformulated as an operator equation of the first kind. To construct a stabilized approximate solution we employ a variant of the iterative method. We also present error estimates between the exact solution and the regularized solution by the a priori and the a posteriori parameter choice rules. Finally, some numerical verifications on the efficiency and accuracy of the proposed algorithm is presented.

Publisher

Vilnius Gediminas Technical University

Reference30 articles.

1. A.S. Berdyshev, A. Cabada and E.T. Karimov. On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator. Nonlinear Analysis: Theory, Methods & Applications, 75(6):3268-3273, 2012. https://doi.org/10.1016/j.na.2011.12.033

2. A.V. Bitsadze. On the problem of equations of mixed type. Trudy Matematicheskogo Instituta imeni VA Steklova, 41:3-59, 1953.

3. A.V. Bitsadze. Incorrectness of Dirichlet's problem for the mixed type of equations in mixed regions. In Dokl. Akad. Nauk SSSR, volume 122, pp. 167-170, 1958.

4. A.V. Bitsadze. Equations of the mixed type. Elsevier, 2014.

5. L. Boudabsa and T. Simon. Some properties of the Kilbas-Saigo function. Mathematics, 9(3):217, 2021. https://doi.org/10.3390/math9030217

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3