Affiliation:
1. Laboratoire Equations aux dérivées partielles non linéaires et Histoire des mathematiques Ecole Normale Supérieure B. Ibrahimi Boîte Postale 92, Vieux Kouba, 16050 Alger, Algérie
Abstract
In this paper, we consider the equation
$-\textrm{div}\,(a(x,u,Du){=}H(x,u,Du)\\{+}\frac{a_{0}(x)}{\vert u \vert^{\theta}}+\chi_{\{u\neq 0\}}\,f(x)$
{in} $\Omega$, with boundary conditions
$u=0$ {on} $\partial\Omega$,
where $\Omega$ is an open bounded subset of $\mathbb{R}^{N}$, $1<p< N$, $-\mbox{div}(a(x,u,Du))$ is a Leray-Lions operator defined on $W_{0}^{1,p}(\Omega)$, $a_{0}\in L^{N/p}(\Omega )$, $a_{0}> 0$, $0<\theta\leq 1$, $\chi_{\{u\neq 0\}}$ is a characteristic function, $f\in L^{N/p}(\Omega)$
and $H(x,s,\xi)$ is a Carath\'eodory function such that $-c_{0}\, a(x,s,\xi)\xi\,\leq H(x,s,\xi)\,\mbox {sign}(s)\leq \gamma\,a(x,s,\xi)\xi \quad
\mbox {a.e. } x\in \Omega , \forall s\in\mathbb{R}\,\, ,
\forall\xi \in \mathbb{R}^{N}.
$
For $\Vert a_{0}\Vert_{N/p}$ and $\Vert f\Vert_{N/p}$ sufficiently small, we prove the existence of at least one solution $u$ of this problem which is moreover such that the function $\exp(\delta \vert u \vert)-1 $ belongs to $W_{0}^{1,p}(\Omega)$ for some $\delta\geq \gamma$. This solution satisfies some a priori estimates in $W_0^{1,p}(\Omega)$.
Publisher
Vilnius Gediminas Technical University