OUTLIER DETECTION METHOD USE FOR THE NETWORK FLOW ANOMALY DETECTION / IŠSKIRČIŲ RADIMO METODŲ TAIKYMAS ANOMALIJOMS KOMPIUTERIŲ TINKLO PAKETŲ SRAUTUOSE APTIKTI

Author:

Ciplinskas Rimas1,Paulauskas Nerijus1

Affiliation:

1. Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Abstract

New and existing methods of cyber-attack detection are constantly being developed and improved because there is a great number of attacks and the demand to protect from them. In prac-tice, current methods of attack detection operates like antivirus programs, i. e. known attacks signatures are created and attacks are detected by using them. These methods have a drawback – they cannot detect new attacks. As a solution, anomaly detection methods are used. They allow to detect deviations from normal network behaviour that may show a new type of attack. This article introduces a new method that allows to detect network flow anomalies by using local outlier factor algorithm. Accom-plished research allowed to identify groups of features which showed the best results of anomaly flow detection according the highest values of precision, recall and F-measure. Kibernetinių atakų gausa ir įvairovė bei siekis nuo jų apsisaugoti verčia nuolat kurti naujus ir tobulinti jau esamus atakų aptikimo metodus. Kaip rodo praktika, dabartiniai atakų atpažinimo metodai iš esmės veikia pagal antivirusinių programų principą, t.y. sudaromi žinomų atakų šablonai, kuriais remiantis yra aptinkamos atakos, tačiau pagrindinis tokių metodų trūkumas – negalėjimas aptikti naujų, dar nežinomų atakų. Šiai problemai spręsti yra pasitelkiami anomalijų aptikimo metodai, kurie leidžia aptikti nukrypimus nuo normalios tinklo būsenos. Straipsnyje yra pateiktas naujas metodas, leidžiantis aptikti kompiuterių tinklo paketų srauto anomalijas taikant lokalių išskirčių faktorių algoritmą. Atliktas tyrimas leido surasti požymių grupes, kurias taikant anomalūs tinklo srautai yra atpažįstami geriausiai, t. y. pasiekiamos didžiausios tikslumo, atkuriamumo ir F-mato reikšmės.

Publisher

Vilnius Gediminas Technical University

Subject

General Medicine

Reference9 articles.

1. Disclosure: detecting botnet command and control servers through large-scale NetFlow analysis;Bilge, L.,2012

2. LOF: Identyfying Density-Based Local Outliers;Breuning, M. M.,2000

3. Cisco Systems. 2012. Introduction to Cisco IOS NetFlow – a technical overview. White paper, 16 2012.

4. Anomaly detection: a survey;Chandola, V.;ACM Computing Surveys (CSUR),2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3