Affiliation:
1. Institute of Mathematics and Informatics, Akademijos g. 4, LT-08663 Vilnius, Lithuania
Abstract
Many problems in economy may be formulated as global optimization problems. Most numerically promising methods for solution of multivariate unconstrained Lipschitz optimization problems of dimension greater than 2 use rectangular or simplicial branch‐and‐bound techniques with computationally cheap, but rather crude lower bounds. The proposed branch‐and‐bound algorithm with simplicial partitions for global optimization uses a combination of 2 types of Lipschitz bounds. One is an improved Lipschitz bound with the first norm. The other is a combination of simple bounds with different norms. The efficiency of the proposed global optimization algorithm is evaluated experimentally and compared with the results of other well‐known algorithms. The proposed algorithm often outperforms the comparable branch‐and‐bound algorithms. Santrauka Daug įvairių ekonomikos uždavinių yra formuluojami kaip globaliojo optimizavimo uždaviniai. Didžioji dalis Lipšico globaliojo optimizavimo metodų, tinkamų spręsti didesnės dimensijos, t. y. n > 2, uždavinius, naudoja stačiakampį arba simpleksinį šakų ir rėžių metodus bei paprastesnius rėžius. Šiame darbe pasiūlytas simpleksinis šakų ir rėžių algoritmas, naudojantis dviejų tipų viršutinių rėžių junginį. Pirmasis yra pagerintas rėžis su pirmąja norma, kitas – trijų paprastesnių rėžių su skirtingomis normomis junginys. Gautieji eksperimentiniai pasiūlyto algoritmo rezultatai yra palyginti su kitų gerai žinomų Lipšico optimizavimo algoritmų rezultatais.
Publisher
Vilnius Gediminas Technical University
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献