Affiliation:
1. AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
2. University of Physical Education in Warsaw, Faculty of Physical Education in Biała Podlaska, Akademicka 2, 21-500 Biała Podlaska, Poland
Abstract
In the recent years, attention has been attracted to the development of activities (developing and implementation of standards, directives, regulations, policies etc.) related to the environmental protection and implementation of the principles of sustainable development. Also in Poland, principles ofthat concept are put into practice. There is, however, a shortage of elaborations which the future investor or designer could, in an easy way, utilise for the selection of environment‐friendly materials, technologies, building utilities and so forth, i.e. to design a facility which causes the least harm possible to the environment, maintaining at the same time low energy demand during its life cycle. According to the philosophy of environmental protection, a building design should take into consideration its entire life cycle, and its structure and utilities should allow the supplies of energy needed for heating to be eliminated while using the building. The present paper aims to give multi‐attribute analysis for assessment of building variants, which utilises the Life Cycle Assessment method (LCA). The method defines a number of so‐called environmental impact categories, which include criteria to be considered while selecting a solution, which minimises such impacts. The most important of them and costs are taken into account in the multi‐criteria analysis for optimum solution selection. The results of eco‐energetic assessment of variants house are grounds to supporting decisions in programming, designing and performing houses, taking into consideration numerous others aspects (usable, technical, social etc.). Santrauka Pastaraisiais metais pasaulyje vis daugiau dėmesio skiriama aplinkosaugai ir darnaus vystymosi principų įgyvendinimui (politikos formavimui, standartų, direktyvų kūrimui ir įgyvendinimui). Lenkijoje taip pat bandoma įgyvendinti šiuos principus. Tačiau iki šiol stigo tipinių sprendimų, kuriuos investuotojas ar projektuotojas galėtų pritaikyti nekenksmingų aplinkai medžiagų, technologijų ir inžinerinių sistemų pasirinkimui, t. y. suprojektuoti pastatą, darantį mažiausiai žalos aplinkai, tuo pat metu sunaudojantį mažai energijos per visą savo gyvavimo ciklą. Pagal aplinkosaugos koncepciją pastatas turi būti suprojektuotas atsižvelgiant į visą jo gyvavimo ciklą, o jo konstrukcija ir inžinerinės sistemos turėtų užtikrinti minimalų poreikį šildyti eksploatuojamą pastatą. Straipsnyje pateikiama daugiakriterinė pastato variantų analizė atsižvelgiant į jo gyvavimo ciklą. Metodas įvertina rodikliais apibūdinamas poveikio aplinkai kategorijas, paskui priimamas sprendimas, užtikrinantis mažiausią poveikį aplinkai. Atliekant daugiakriterinę analizę ir priimant optimalų sprendimą vertinami svarbiausieji poveikiai ir kaina. Ekoenerginio pastato variantų vertinimo rezultatai yra pagrindas sprendimams priimti projektuojant ir eksploatuojant pastatus, taip pat vertinant kitus aspektus (eksploatacinius, socialinius).
Publisher
Vilnius Gediminas Technical University
Reference31 articles.
1. Rating and ranking of multiple-aspect alternatives using fuzzy sets
2. CDP. 1989. “Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of the Member States relating to construction products (89/106/EEC)”. (OJL40, 11.2.1989, p. 12)
3. EPBD. 2003. Directive 2002/91/EC of the European Parliament of the Council of 16 December 2002 on the energy performance of buildings.Official Journal of the European Communities, 4. 1. 2003, L 1/65
4. European Environment Agency. 1997. “Life Cycle Assessment (LCA): A guide to Approaches, Experience and Information Sources”. European Environment Agency. Environmental Issues Series, 6