Methods and criteria for evaluation of asphalt mixture resistance to low temperature cracking

Author:

Gražulytė Judita1,Vaitkus Audrius1,Andrejevas Vitalijus1,Gribulis Gediminas1

Affiliation:

1. Vilnius Gediminas Technical University

Abstract

In cold regions and areas where there is a huge difference between high and low temperatures asphalt pavements are subject to low temperature cracking. The appeared cracks form pavement discontinuities, through which water penetrates into pavement structure. It reduces the bearing capacity of the whole pavement structure, weakens adhesion between bitumen and aggregate, affects bonding between layers and increases the development of frost heaves. A sealing of cracks deals with these issues. However, additional inspections after each winter have to be carried out to identify both cracks that have newly appeared and cracks that need to be resealed. These activities significantly increase road maintenance cost. Selection of the appropriate asphalt mixture by its performance at low temperatures reduces or even prevents low temperature cracking of asphalt pavements. A number of methods such as the Indirect Tensile Test, the Bending Beam Rheometer Test, the Thermal Stress Restrained Specimen Test, Asphalt Thermal Cracking Analyser, the Single-Edge-Notched Beam Test, the Disc-Shaped Compact Tension Test, the Semi-Circular Bend Test, the Fenix Test, Asphalt Concrete Cracking Device and Spectral Analysis of Acoustic Emission are developed to evaluate asphalt mixture resistance to low temperature cracking. This paper presents an analysis of these tests, emphasizes their advantages and disadvantages and gives limiting criteria to evaluate asphalt mixture resistance to low temperature cracking. The test advantages and disadvantages are deciding factors in a test selection. Some tests such as the Thermal Stress Restrained Specimen Test and Spectral Analysis of acoustic emission can directly reveal the lowest temperature at which asphalt mixture can withstand induced thermal stresses.

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3