Analysis of rigid flange of bridge truss girder

Author:

Siekierski Wojciech1

Affiliation:

1. Institute of Civil Engineering, Poznań University of Technology

Abstract

Contemporary bridge truss girders have usually “W” bracing and spacing of cross beams smaller than spacing of truss nodes. The flange at deck level is loaded at its nodes and between them. It acts as a truss member and as a beam simultaneously. An analysis of the rigid flange in two stages is presented. The first stage of the analysis is aimed at computation of axial forces. Equivalent loading applied at truss nodes and truss member hinged connections are assumed. Ritter’s method is used to compute axial forces in rigid flange members. The second stage of analysis is aimed at computation of bending moments. A model of the rigid flange as a continuous beam on elastic supports with imposed settlements is assumed. In this stage additional model of truss girder as simply supported beam of equivalent moment of inertia is considered as well. Working example of application of presented analysis is given. Two computational models of rigid flange are analysed: model of rigid flange as member of truss girder and model of isolated rigid flange as continuous beam. Data recorded during test loading of two truss bridge spans are used for verification. Modelling isolated rigid flange as continuous beam and classical modelling of truss girder as plane frame provide similar accuracy of assessment of internal forces and vertical displacements distribution in rigid flange.

Publisher

Riga Technical University

Subject

Building and Construction,Civil and Structural Engineering

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3