INVESTIGATING SELF-COOLING EFFECTS OF VENTILATED ATTICS UNDER DIFFERENT ROOF AND AMBIENT TEMPERATURES IN SUMMER

Author:

Shen Zhigang1,Wang Shimin1

Affiliation:

1. Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, 68588-0500 NE, USA

Abstract

An unsteady computational fluid dynamics model is employed to simulate summer-time buoyancy-driven turbulent ventilation in gable-roof attics of residential buildings. The energy performance of vented attics is assessed by comparing their performance to sealed attics with the same geometry and insulation configurations. The simulated boundary conditions of the roof-top temperature ranging between 295.15 K and 345.15 K, coupled with an ambient temperature ranging between 295.15 K and 315.15 K, resemble the summer attic conditions with effects of solar irradiance on the roofs. Simulation results indicate that both the vented and sealed attics are dominated by thermal stratification. The cooling load of the sealed attic is predicted to be about 3 times greater than that of the vented attic for a roof-top temperature of 345.15 K and an ambient temperature of 305.15 K. Both the cooling load and ventilating air flow rate of the vented attic are sensitive to the ambient temperature variation.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3