Affiliation:
1. Institute of Building Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Abstract
Many construction processes are carried out by machines working together and forming technological systems, eg earthmoving machinery made up of excavators and haulers (trucks). Productivity (W(N) ) is a key to valuate the process design purposes. The paper presents the results obtained by applying artificial neural networks to predict productivity (W(N),S ) for earthmoving machinery systems, consisting of c excavators and N haulers. Experimentally determined productivity values can form a standard basis for designing construction earthworks. Possessing the data set consisting of the technical parameters of earthmoving machinery systems and the corresponding productivities for different output hauling distances, one can train artificial neural networks and use subsequently for the reliable prediction of W(N),S .
Publisher
Vilnius Gediminas Technical University
Subject
Strategy and Management,Civil and Structural Engineering
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献