A new hybrid method for size and topology optimization of truss structures using modified ALGA and QPGA

Author:

NOII Nima1,AGHAYAN Iman2,HAJIRASOULIHA Iman3,KUNT Mehmet Metin4

Affiliation:

1. The University of Nottingham

2. Shahrood University of Technology

3. The University of Sheffield

4. Eastern Mediterranean University

Abstract

Modified Augmented Lagrangian Genetic Algorithm (ALGA) and Quadratic Penalty Function Genetic Algo­rithm (QPGA) optimization methods are proposed to obtain truss structures with minimum structural weight using both continuous and discrete design variables. To achieve robust solutions, Compressed Sparse Row (CSR) with reordering of Cholesky factorization and Moore Penrose Pseudoinverse are used in case of non-singular and singular stiffness matrix, respectively. The efficiency of the proposed nonlinear optimization methods is demonstrated on several practical exam­ples. The results obtained from the Pratt truss bridge show that the optimum design solution using discrete parameters is 21% lighter than the traditional design with uniform cross sections. Similarly, the results obtained from the 57-bar planar tower truss indicate that the proposed design method using continuous and discrete design parameters can be up to 29% and 9% lighter than traditional design solutions, respectively. Through sensitivity analysis, it is shown that the proposed methodology is robust and leads to significant improvements in convergence rates, which should prove useful in large-scale applications.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

Reference18 articles.

1. Weight minimization of trusses with genetic algorithm

2. Haftka, R. T.; Gurdal, Z. 1982. Elements of structural optimization. Boston, Massachusetts: Kluwer Academic Publisher. 481 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3