A NUMERICAL SOLUTION THAT DETERMINES THE TEMPERATURE FIELD INSIDE PHASE CHANGE MATERIALS: APPLICATION IN BUILDINGS

Author:

Ciulla Giuseppina1,Brano Valerio Lo1,Messineo Antonio2,Peri Giorgia1

Affiliation:

1. Department of Engineering and Mathematical Modelling, University of Palermo, Edificio str. 9, 90128, Palermo, Italy

2. The Kore University of Enna, Universitaria, 94100, Enna, Italy

Abstract

The use of novel building materials that contain active thermal components would be a major advancement in achieving significant heating and cooling energy savings. In the last 40 years, Phase Change Materials or PCMs have been tested as thermal mass components in buildings, and most studies have found that PCMs enhance the building energy performance. The use of PCMs as an energy storage device is due to their relatively high fusion latent heat; during the melting and/or solidification phase, a PCM is capable of storing or releasing a large amount of energy. PCMs in a wall layer store solar energy during the warmer hours of the day and release it during the night, thereby decreasing and shifting forward in time the peak wall temperature. In this paper, an algorithm is presented based on the general Fourier differential equations that solve the heat transfer problem in multi-layer wall structures, such as sandwich panels, that includes a layer that can change phase. In detail, the equations are proposed and transformed into formulas useful in the FDM approach (finite difference method), which solves the system simultaneously for the temperature at each node. The equation set proposed is accurate, fast and easy to integrate into most building simulation tools in any programming language. The numerical solution was validated using a comparison with the Voller and Cross analytical test problem.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3