DEVELOPING A HYBRID DATA MINING APPROACH BASED ON MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION FOR SOLVING A TRAVELING SALESMAN PROBLEM

Author:

Haeri Abdorrahman1,Tavakkoli-Moghaddam Reza1

Affiliation:

1. Department of Industrial Engineering and Center of Excellence for Intelligence Based Experimental Mechanic, College of Engineering, University of Tehran, Tehran, Iran

Abstract

A traveling salesman problem (TSP) is an NP-hard optimization problem. So it is necessary to use intelligent and heuristic methods to solve such a hard problem in a less computational time. This paper proposes a novel hybrid approach, which is a data mining (DM) based on multi-objective particle swarm optimization (MOPSO), called intelligent MOPSO (IMOPSO). The first step of the proposed IMOPSO is to find efficient solutions by applying the MOPSO approach. Then, the GRI (Generalized Rule Induction) algorithm, which is a powerful association rule mining, is used for extracting rules from efficient solutions of the MOPSO approach. Afterwards, the extracted rules are applied to improve solutions of the MOPSO for large-sized problems. Our proposed approach (IMOPSP) conforms to a standard data mining framework is called CRISP-DM and is performed on five standard problems with bi-objectives. The associated results of this approach are compared with the results obtained by the MOPSO approach. The results show the superiority of the proposed IMOPSO to obtain more and better solutions in comparison to the MOPSO approach.

Publisher

Vilnius Gediminas Technical University

Subject

Economics and Econometrics,Business, Management and Accounting (miscellaneous)

Reference33 articles.

1. Data Mining

2. Knowledge Discovery and Data Mining

3. Coello , C. A. ; Lechunga , M. S. 2002 . MOPSO: a proposal for multiple objective particle swarm optimization , in Proc. of the IEEE World Congress on Evolutionary Computation . Hawaii , 1051 – 1056 .

4. Multi-objective ant colony optimization based on decomposition for bi-objective traveling salesman problems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3