AN INTEGRATED TWO-STAGE METHODOLOGY FOR OPTIMISING THE ACCURACY OF PERFORMANCE CLASSIFICATION MODELS

Author:

COSTEA Adrian1,FERRARA Massimiliano2,ŞERBAN Florentin1

Affiliation:

1. Bucharest University of Economic Studies

2. University Mediterranea of Reggio Calabria

Abstract

In this paper we propose a two-stage methodology to classify the non-banking financial institutions (NFIs) based on their financial performance. The first stage of the methodology consists of grouping the companies in similar financial performance classes (e.g.: “good”, “average”, “poor” performance classes). We optimise the allocation of the observations within the performance clusters by applying an enhanced version of an observation re-allocation procedure proposed in our previous work. Next, based on the result of the grouping phase, we construct a performance class variable by attaching a performance label to each data row. Then, in the second phase of our methodology, we propose a feed-forward neural-network classification model that maps the input space to the newly-constructed performance class variable. This model allows us to forecast the performance of new companies as data become available.

Publisher

Vilnius Gediminas Technical University

Subject

Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3