THE WAYS OF INTRODUCING AI/ML-BASED PREDICTION METHODS FOR THE IMPROVEMENT OF THE SYSTEM OF GOVERNMENT SOCIO-ECONOMIC ADMINISTRATION IN UKRAINE

Author:

Ivashchenko Tetiana1ORCID,Ivashchenko Andrii2ORCID,Vasylets Nelia1ORCID

Affiliation:

1. Academy of Labour, Social Relations and Tourism, Kyiv, Ukraine

2. Oracle America, Inc., Seattle, Washington, United States

Abstract

The objective of the article is to develop and test in practice a mechanism for constructing AI/ML-based predictions, adapted for use in the system of government socio-economic administration in Ukraine. Research design is represented by several methods like qualitative analysis in order to identify potential benefits of AI use in different spheres of government administration, synthesis to generate new datasets for the experiment, and abstraction to abstract from the current situation in Ukraine, population displacement, uneven statistics reporting. Among empirical methods are prediction and experimental methods to construct a mechanism for the implementation of AI/ML prediction methods in public administration, develop a high-level architecture of the AI/ML prediction system, and create and train the COVID-19 prediction neuron network. A holistic vision of the AI/ML-based prediction construction mechanism, depending on data taken from state official online platforms, is presented, in addition, the ways of its possible practical application for the improvement of the national system of state socio-economic administration are described. The main condition and guarantee of obtaining accurate results is access to quality data through platforms such as Diia, HELSI, national education platforms, government banks, etc. The findings of the research suggest that wide implementation of AI/ML-based prediction technologies will allow the government in perspective to increase the efficiency of the use of budgetary resources, the effectiveness of the government target programs, improve the quality of public administration and to better satisfy the citizens’ demand. Future studies should be done to overcome the limitations of the approach: find a way to protect and extract sensitive information from government platforms, fight neural network bias, and create a more perfect system that is able to make multiparameter predictions and is also self-improving on the basis of the obtained results.

Publisher

Vilnius Gediminas Technical University

Subject

Strategy and Management

Reference37 articles.

1. Abillama, N., Mills, S., Boison, G., & Carrasco, M. (2021). Unlocking the value of AI-powered government. Boston Consulting Group. https://web-assets.bcg.com/27/58/3f8a469e45d2ad01c74d3ba15f7d/bcg-unlocking-the-value-of-ai-powered-government-july-2021.pdf

2. Anandhanathan, P., & Gopalan, P. (2021). Comparison of machine learning algorithm for COVID-19 death risk prediction. Research Square. https://doi.org/10.21203/rs.3.rs-196077/v1

3. Biz Cenzor. (2022, May 24). The number of participants in the addendum "Diia" exceeded 17 million. https://biz.censor.net/news/3343506/kilkist_korystuvachiv_dodatku_diya_perevyschyla_17_milyioniv_mintsyfry

4. Bokonda, L., Ouazzani-Touhami, K., & Souissi, N. (2020). Predictive analysis using machine learning: Review of trends and methods. In 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE. https://doi.org/10.1109/ISAECT50560.2020.9523703

5. Buerkli, D., & Gagliani, M. (2018, October 30). How to make AI work in government and for people (Report). Centre for Public Impact. A BCG Foundation. https://www.centreforpublicimpact.org/assets/documents/CPI-How-to-make-AI-work-in-government-and-for-people.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3