Affiliation:
1. Academy of Labour, Social Relations and Tourism, Kyiv, Ukraine
2. Oracle America, Inc., Seattle, Washington, United States
Abstract
The objective of the article is to develop and test in practice a mechanism for constructing AI/ML-based predictions, adapted for use in the system of government socio-economic administration in Ukraine. Research design is represented by several methods like qualitative analysis in order to identify potential benefits of AI use in different spheres of government administration, synthesis to generate new datasets for the experiment, and abstraction to abstract from the current situation in Ukraine, population displacement, uneven statistics reporting. Among empirical methods are prediction and experimental methods to construct a mechanism for the implementation of AI/ML prediction methods in public administration, develop a high-level architecture of the AI/ML prediction system, and create and train the COVID-19 prediction neuron network. A holistic vision of the AI/ML-based prediction construction mechanism, depending on data taken from state official online platforms, is presented, in addition, the ways of its possible practical application for the improvement of the national system of state socio-economic administration are described. The main condition and guarantee of obtaining accurate results is access to quality data through platforms such as Diia, HELSI, national education platforms, government banks, etc. The findings of the research suggest that wide implementation of AI/ML-based prediction technologies will allow the government in perspective to increase the efficiency of the use of budgetary resources, the effectiveness of the government target programs, improve the quality of public administration and to better satisfy the citizens’ demand. Future studies should be done to overcome the limitations of the approach: find a way to protect and extract sensitive information from government platforms, fight neural network bias, and create a more perfect system that is able to make multiparameter predictions and is also self-improving on the basis of the obtained results.
Publisher
Vilnius Gediminas Technical University
Reference37 articles.
1. Abillama, N., Mills, S., Boison, G., & Carrasco, M. (2021). Unlocking the value of AI-powered government. Boston Consulting Group. https://web-assets.bcg.com/27/58/3f8a469e45d2ad01c74d3ba15f7d/bcg-unlocking-the-value-of-ai-powered-government-july-2021.pdf
2. Anandhanathan, P., & Gopalan, P. (2021). Comparison of machine learning algorithm for COVID-19 death risk prediction. Research Square. https://doi.org/10.21203/rs.3.rs-196077/v1
3. Biz Cenzor. (2022, May 24). The number of participants in the addendum "Diia" exceeded 17 million. https://biz.censor.net/news/3343506/kilkist_korystuvachiv_dodatku_diya_perevyschyla_17_milyioniv_mintsyfry
4. Bokonda, L., Ouazzani-Touhami, K., & Souissi, N. (2020). Predictive analysis using machine learning: Review of trends and methods. In 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE. https://doi.org/10.1109/ISAECT50560.2020.9523703
5. Buerkli, D., & Gagliani, M. (2018, October 30). How to make AI work in government and for people (Report). Centre for Public Impact. A BCG Foundation. https://www.centreforpublicimpact.org/assets/documents/CPI-How-to-make-AI-work-in-government-and-for-people.pdf
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献