RESEARCH ON SHIP AUTONOMOUS STEERING CONTROL FOR SHORT-SEA SHIPPING PROBLEMS

Author:

Jakovlev Sergej1,Andziulis Arūnas1,Daranda Andrius2,Voznak Miroslav2,Eglynas Tomas3

Affiliation:

1. Klaipėda University

2. Technical University of Ostrava

3. Vilnius Gediminas Technical University

Abstract

Today most ship rotation angle (steering control during movement) increase or decrease is done using an operator on deck or the auxiliary system in the ships engine room. Formal regulations suggest using manual inspection of the ship rotation and the work effectiveness of the engine during manoeuvring in ports and in the open sea regions. The accuracy of this procedure is very low and depends on the personnel of the deck. Therefore, automation and computer control systems are constantly required to assist the human eye. This problem becomes clearly visible when dealing with full ship autonomy in the open sea in the short-sea shipping regions. The trend of maritime technology development will only increase in the area of human interaction decrease with the physical operations and the shipping procedures, which will lead to the future full ship autonomy in the open sea regions around the globe. With the growing automation technologies, predictive control can prove to be a better approach than the traditionally applied visual inspection policy and linear control models. Ship full autonomy is also linked to the ship’s machinery regular repair and maintenance that has to be carried out for delivering satisfactory performance and minimizing downtime during transportation operations. In this paper, current stages of development of the intelligent transportation system concept are discussed for the ship autonomy in manoeuvring control and a robust ships’ systems integration and communication system concept is presented for several normal and abnormal situations: high-traffic, potentially dangerous situations or port approaching or ship maintenance, with the capability to solve problems with the limited human interface and with a remote control possibility. Then, simplified ship steering motor system for the main pump is analysed for rotation control using control voltage from the converters. Retrieved data from a small experimental control motor is used for the predictive control approach using two different methods: a neural network trained with Basic Levenberg– Marquardt Method and a Linear Model.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3