Affiliation:
1. Shanghai University
2. Shanghai Normal University
3. University of Shanghai for Science and Technology
Abstract
In this paper, we first compute the multiple non-trivial solutions of the Schrodinger equation on a unit disk, by using the Liapunov-Schmidt reduction and symmetry-breaking bifurcation theory, combined with the mixed Fourier-Legendre spectral and pseudospectral methods. After that, we propose the extended systems, which can detect the symmetry-breaking bifurcation points on the branch of the O(2) symmetric positive solutions. We also compute the multiple positive solutions with various symmetries of the Schrodinger equation by the branch switching method based on the Liapunov-Schmidt reduction. Finally, the bifurcation diagrams are constructed, showing the symmetry/peak breaking phenomena of the Schr¨odinger equation. Numerical results demonstrate the effectiveness of these approaches.
Funder
NSF of China
Innovation Program of Shanghai MEC
NSF of Shanghai
Publisher
Vilnius Gediminas Technical University
Subject
Modeling and Simulation,Analysis