ON EFFICIENT NUMERICAL ALGORITHMS FOR SIMULATION OF HIGH POWER ELECTRICAL CABLES

Author:

Čiegis Raimondas1,Jankevičiūtė Gerda1,Tumanov Natalija1

Affiliation:

1. Vilnius Gediminas Technical University

Abstract

The new virtual modelling tool is constructed, which is used for optimal design of power transmission lines and cables. The construction of such lines should meet the latest power transmission network technical and economical requirements. The solver is is based on classical and modified mathematical models describing main heat conduction processes: diffusion, convection and radiation in various materials and environments. In basic heat conduction equation, we take into account a linear dependence of the resistance on temperature. Multi-physic and multi-scale models are required to simulate industrial cases of power transmission lines. The velocity of convective transport of the heat in air regions is simulated by solving a coupled thermo-convection problem including the heat conduction problem and the standard Navier-Stokes model of the heat flow in air. Another multi-physic model is used to describe changes of material heat conduction coefficients in soil due to influence of heating. This process is described by by solving a simplified mass balance equation for flows in porous media. The multi-scale and homogenization analysis is required to to formulate simple and accurate mathematical describing heat conduction process is metal region which consists of a bundle of tightly coupled metal wires. The FVM is used to solve the obtained systems of differential equations. Discretization of the domain is done by applying “aCute” mesh generator, which is a modification of the well-known Triangle mesh generator. The discrete schemes are implemented by using the OpenFOAM tool.

Publisher

Vilnius Gediminas Technical University

Subject

Modelling and Simulation,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3