Affiliation:
1. Fujian Normal University
Abstract
Based on the asymptotic analysis technique developed by Eckhaus [Lecture Notes in Math., vol. 985, pp 449-494. Springer, Berlin, 1983], this paper aims to study the existence and the asymptotic behaviors of relaxation oscillations of regular and canard types in a singularly perturbed generalized Lionard system with a non-generic turning point. The singularly perturbed Lionard system considered in this paper is very general and numerous real world models like some biological ones can be rewritten in the form of this system after a series of transformations. Under certain conditions, we rigorously prove the existence of regular relaxation oscillations and canard relaxation oscillations under the specific parameter conditions. As an application, two biological models, namely, a FitzHugh-Nagumo model and a twodimensional predator-prey model with Holling-II response are studied, in which, the existence of regular relaxation oscillations and canard relaxation oscillations as well as the bifurcation curves are obtained.
Publisher
Vilnius Gediminas Technical University
Subject
Modelling and Simulation,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献