Electrochemical performance of aqueous electrolytes in porous carbon derived cassava peel electrode material-based for sustainable symmetrical supercapacitor

Author:

Taer ErmanORCID,Eva Wahyuni Harahap,Apriwandi ApriwandiORCID,Rika Taslim

Abstract

Electrolytes have been generally recognized as one of the most important components in enhancing the electrochemical performance of supercapacitors. On the other hand, aqueous electrolytes are considered prime candidates for the development of the next generation of symmetric supercapacitors due to their low-cost, environmentally friendly, high ionic conductivity, fine ionic size, and high capacitance. Herein, the symmetrical supercapacitor of the sustainable porous carbon-based electrode material was confirmed through various aqueous electrolytes consisting of neutral, basic, and acidic Na2SO4, KOH, and H2SO4. Activated carbon is obtained from high potential biomass sources of cassava peel waste. Activated carbon synthesis was performed with a comprehensive approach in order to obtain abundant pore structure, high porosity, and improved wettability through a combination of high-temperature chemical and physical activation. in addition, the electrode material is designed to resemble a solid disc without the addition of a synthetic binder. The evaluation of the disc dimensions showed high porosity in the obtained activated carbon. Furthermore, the symmetrical supercapacitor of the optimized electrode material exhibit excellent specific capacitances of 112, 150, and 183 F g-1 at 1 mV s-1 in the electrolytes Na2SO4, KOH, and H2SO4, respectively. In addition, the highest rate capability of 70% was confirmed in the H2SO4 acid electrolyte. Moreover, their coulombic efficiency can be maintained around 89% with low equivalent series resistance 0.21-0.42 ?. Therefore, the activated carbon-based supercapacitor symmetric cell device from cassava peel shows high performance for developing high-performance supercapacitor applications with guaranteed stability in aqueous electrolytes.

Publisher

Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Riau

Subject

General Medicine,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3