Exploring the Time-efficient Evolutionary-based Feature Selection Algorithms for Speech Data under Stressful Work Condition

Author:

Adi Derry Pramono,Junaedi Lukman,Frismanda ,Gumelar Agustinus Bimo,Kristanto Andreas Agung

Abstract

Initially, the goal of Machine Learning (ML) advancements is faster computation time and lower computation resources, while the curse of dimensionality burdens both computation time and resource. This paper describes the benefits of the Feature Selection Algorithms (FSA) for speech data under workload stress. FSA contributes to reducing both data dimension and computation time and simultaneously retains the speech information. We chose to use the robust Evolutionary Algorithm, Harmony Search, Principal Component Analysis, Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization, and Bee Colony Optimization, which are then to be evaluated using the hierarchical machine learning models. These FSAs are explored with the conversational workload stress data of a Customer Service hotline, which has daily complaints that trigger stress in speaking. Furthermore, we employed precisely 223 acoustic-based features. Using Random Forest, our evaluation result showed computation time had improved 3.6 faster than the original 223 features employed. Evaluation using Support Vector Machine beat the record with 0.001 seconds of computation time.

Publisher

EMITTER International Journal of Engineering Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Improvement of LSTM and SVM Approach for Multiclass Fall Detection System;EMITTER International Journal of Engineering Technology;2022-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3