Classification Algorithms of Maternal Risk Detection For Preeclampsia With Hypertension During Pregnancy Using Particle Swarm Optimization

Author:

Tahir Muhlis,Badriyah Tessy,Syarif Iwan

Abstract

Preeclampsia is a pregnancy abnormality that develops after 20 weeks of pregnancy characterized by hypertension and proteinuria.  The purpose of this research was to predict the risk of preeclampsia level in pregnant women during pregnancy process using Neural Network and Deep Learning algorithm, and compare the result of both algorithm. There are 17 parameters that taken from 1077 patient data in Haji General Hospital Surabaya and two hospitals in Makassar start on December 12th 2017 until February 12th 2018. We use particle swarm optimization (PSO) as the feature selection algorithm. This experiment shows that PSO can reduce the number of attributes from 17 to 7 attributes. Using LOO validation on the original data show that the result of Deep Learning has the accuracy of 95.12% and it give faster execution time by using the reduced dataset (eight-speed quicker than the original data performance). Beside that the accuracy of Deep Learning increased 0.56% become 95.68%. Generally, PSO gave the excellent result in the significantly lowering sum attribute as long as keep and improve method and precision although lowering computational period. Deep Learning enables end-to-end framework, and only need input and output without require for tweaking the attributes or features and does not require a long time and complex systems and understanding of the deep data on computing.

Publisher

EMITTER International Journal of Engineering Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3