Text Mining for Employee Candidates Automatic Profiling Based on Application Documents

Author:

Wibawa Adhi Dharma,Amri Arni Muarifah,Mas Arbintoro,Iman Syahrul

Abstract

Opening job vacancies using the Internet will receive many applications quickly. Manually filtering resumes takes a lot of time and incurs huge costs. In addition, this manual screening process tends to be inaccurate due to fatigue conditions and fails in obtaining the right candidate for the job. This paper proposed a solution to automatically generate the most suitable candidate from the application document. In this study, 126 application documents from a private company were used for the experiment. The documents consist of 41 documents for Human Resource and Development (HRD) staff, 42 documents for IT (Data Developer), and 43 documents for the Marketing position. Text Processing is implemented to extract relevant information such as skills, education, experiences from the unstructured resumes and summarize each application. A specific dictionary for each vacancy is generated based on terms used in each profession. Two methods are implemented and compared to match and score the application document, namely Document Vector and N-gram analysis. The highest the score obtained by one document, the highest the possibility of application to be accepted. The two methods’ results are then validated by the real selection process by the company. The highest accuracy was achieved by the N-Gram method in IT vacancy with 87,5%, while the Document Vector showed 75% accuracy. For Marketing staff vacancy, both methods achieved the same accuracy as 78%. In HRD staff vacancy, the N-Gram method showed 68%, while Document Vector showed 74%. In conclusion, overall the N-gram method showed slightly better accuracy compared to the Document Vector method. 

Publisher

EMITTER International Journal of Engineering Technology

Subject

General Medicine

Reference27 articles.

1. P. Hendrarso, Meningkatkan Kualitas Sumber Daya Manusia di Perguruan Tinggi menuju Era VUCA : Studi Fenomenologi Pada Perguruan Tinggi Swasta, Prosiding Seminar Stiami, vol. 7, no. 2. 2020.

2. S. R. Astari, “Penerapan Profile Matching Untuk Seleksi Asisten Laboratorium,” Telematika, vol. 16, no. 1, p. 1, 2019, doi: 10.31315/telematika.v16i1.2987.

3. J. Kuswanto, “Penerimaan Karyawan Baru Menggunakan Metode Profile Matching,” J. Ilm. Sist. Informasi, Teknol. Inf. dan Sist. Komput., vol. 15, no. 2, pp. 85–97, 2020.

4. E. Sutinah, “Sistem Pendukung Keputusan Menggunakan Metode Profile Matching dalam Pemilihan Salesman Terbaik,” Informatics Educ. Prof., vol. 2, no. 1, p. 234409, 2017.

5. Hassani, H., Beneki, C., Unger, S., Mazinani, M. T., & Yeganegi, M. R. (2020). Text mining in big data analytics. Big Data and Cognitive Computing, 4(1), 1–34. https://doi.org/10.3390/bdcc4010001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3