Author:
Ronaldo Febby,Sudarsono Amang,Pramadihanto Dadet
Abstract
Drone technology is considered the most effective solution for the improvement of various industrial fields. As a delivery service, drones need a secure communication system that is also able to manage all of the information data in real-time. However, because the data transmission process occurs in a wireless network, data will be sent over a channel that is more unstable and vulnerable to attack. Thus, this research, purposes a Forward Prediction Scheduling-based Stream Control Transmission Protocol (FPS-SCTP) scheme that is implemented on drone data transmission system. This scheme supports piggybacking, multi-streaming, and Late Messages Filter (LMF) which will improve the real-time transmission process in IEEE 802.11 wireless network. Meanwhile, on the cybersecurity aspect, this scheme provides the embedded option feature to enable the encryption mechanism using AES and the digital signatures mechanism using ECDSA. The results show that the FPS-SCTP scheme has better network performance than the default SCTP, and provides full security services with low computation time. This research contributes to providing a communication protocol scheme that is suitable for use on the internet of drones’ environment, both in real-time and reliable security levels.
Publisher
EMITTER International Journal of Engineering Technology
Reference19 articles.
1. Choudhary G, Sharma V, Gupta T, Kim J, You I. Internet of Drones (IoD): Threats, Vulnerability, and Security Perspectives. :14.
2. Gharibi M, Boutaba R, Waslander SL. Internet of Drones. IEEE Access. 2016;4:1148–62.
3. Ronaldo F, Pramadihanto D, Sudarsono A. Secure Communication System of Drone Service using Hybrid Cryptography over 4G/LTE Network. In: 2020 International Electronics Symposium (IES) [Internet]. Surabaya, Indonesia: IEEE; 2020 [cited 2021 Dec 1]. p. 116–22. Available from: https://ieeexplore.ieee.org/document/9231951/
4. H. Kopetz, P. Puschner. Real-Time Communication [Internet]. Insitute of Computer Engineering - TU WIEN Informatics; 2017 [cited 2020 Sep 26]. Available from: https://ti.tuwien.ac.at
5. Stewart R. Stream Control Transmission Protocol [Internet]. RFC Editor; 2007 Sep [cited 2021 Dec 1] p. RFC4960. Report No.: RFC4960. Available from: https://www.rfc-editor.org/info/rfc4960
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献