Classification of Ischemic Stroke with Convolutional Neural Network (CNN) approach on b-1000 Diffusion-Weighted (DW) MRI

Author:

Nugroho Andi Kurniawan,Dinar Mutiara Kusumo Nugraheni ,Terawan Agus Putranto ,I Ketut Eddy Purnama ,Mauridhi Hery Purnomo

Abstract

When the blood flow to the arteries in brain is blocked, its known as Ischemic stroke or blockage stroke. Ischemic stroke can occur due to the formation of blood clots in other parts of the body. Plaque buildup in arteries, on the other hand, can cause blockages because if it ruptures, it can form blood clots. The b-1000 Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) image was used in a general examination to obtain an image of the part of the brain that had a stroke. In this study, classifications used several variations of layer convolution to obtain high accuracy and high computational consumption using b-1000 Diffusion Weighted (DW) MR in ischemic stroke types: acute, sub-acute and chronic. Ischemic stroke was classified using five variants of the Convolutional Neural Network (CNN) architectural design, i.e., CNN1–CNN5. The test results show that the CNN5 architectural design provides the best ischemic stroke classification compared to other architectural designs tested, with an accuracy of 99.861%, precision 99.862%, recall 99.861, and F1-score 99.861%.

Publisher

EMITTER International Journal of Engineering Technology

Subject

General Medicine

Reference38 articles.

1. Indah Permata Sari, Faktor-Faktor yang Berhubungan dengan Terjadinya Stroke Berulang pada Penderita Pasca Stroke, Universitas Muhammadiyah Surakarta, 2015.

2. A. K. Nugroho, T. A. Putranto, I. K. E. Purnama, and M. H. Purnomo, Multi Segmentation Method for Hemorraghic Detection, 2018 Int. Conf. Intell. Auton. Syst., pp. 62–66, 2018.

3. E. R. da Silva, Ambiente virtual colaborativo de diagn ´ ostico a dist ˆ ancia integrado a ferramentas de manipulac¸ ˜ ao de imagens,” Universidade Federal de Pernambuco, 2010.

4. A. D. Guo, J. Fridriksson, P. Fillmore, C. Rorden, H. Yu, K. Zheng and S. Wang, Automated Lesion Detection on MRI scans Using Combined Unsupervised and Supervised Methods, BMC Med. Imaging, vol. 15, pp. 1–21, 2015.

5. and A.-B. M. S. N. Farid, B. M. Elbagoury, M. Roushdy, A Comparative Analysis for Support Vector Machines for Stroke Patients, in WSEAS Proceedings of the 7th European Computing Conference, 2013, pp. 71–76.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Ischemic Stroke Detection Using Deep Learning: A Systematic Literature Review;2023 International Seminar on Application for Technology of Information and Communication (iSemantic);2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3