Deep Learning Approaches for Automatic Drum Transcription

Author:

Cahyaningtyas Zakiya Azizah,Purwitasari Diana,Fatichah Chastine

Abstract

Drum transcription is the task of transcribing audio or music into drum notation. Drum notation is helpful to help drummers as instruction in playing drums and could also be useful for students to learn about drum music theories. Unfortunately, transcribing music is not an easy task. A good transcription can usually be obtained only by an experienced musician. On the other side, musical notation is beneficial not only for professionals but also for amateurs. This study develops an Automatic Drum Transcription (ADT) application using the segment and classify method with Deep Learning as the classification method. The segment and classify method is divided into two steps. First, the segmentation step achieved a score of 76.14% in macro F1 after doing a grid search to tune the parameters. Second, the spectrogram feature is extracted on the detected onsets as the input for the classification models. The models are evaluated using the multi-objective optimization (MOO) of macro F1 score and time consumption for prediction. The result shows that the LSTM model outperformed the other models with MOO scores of 77.42%, 86.97%, and 82.87% on MDB Drums, IDMT-SMT Drums, and combined datasets, respectively. The model is then used in the ADT application. The application is built using the FastAPI framework, which delivers the transcription result as a drum tab.

Publisher

EMITTER International Journal of Engineering Technology

Reference34 articles.

1. Ian D., B. musical notation | Description, Systems, & Note Symbols | Britannica.com. https://www.britannica.com/art/musical-notation (1998).

2. Strayer, H. From Neumes to Notes: The Evolution of Music Notation. Musical Offerings 4, 1–14 (2013).

3. Hainsworth, S. W. & Macleod, M. D. The Automated Music Transcription Problem. 1–23 (2003).

4. Wu, C. W. et al. A Review of Automatic Drum Transcription. IEEE/ACM Transactions on Audio Speech and Language Processing vol. 26 1457–1483 Preprint at https://doi.org/10.1109/TASLP.2018.2830113 (2018).

5. Vogl, R. Deep Learning Methods for Drum Transcription and Drum Pattern Generation. (2018).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-machine Translation Model Evaluation Based on Artificial Intelligence Translation;EMITTER International Journal of Engineering Technology;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3