Planar Microwave Sensor with High Sensitivity for Material Characterization Based on Square Split Ring Resonator (SSRR) for Solid and Liquid

Author:

Maizatul Alice Meor Said ,Zahriladha Zakaria ,Mohamad Harris Misran ,Mohd Azlishah bin Othman ,Redzuan Abdul Manap ,Abd Shukur bin Jaafar ,Shadia Suhaimi ,Nurmala Irdawaty Hassan

Abstract

Microwave resonator sensors are the most extensively used sensors in the food industries, quality assurance, medical, and manufacturing. Planar resonant technique is chosen as the medium for characterizing dielectric properties of material due to its compact in size, low cost and easy to fabricate. But these techniques have a low Q-factor and little sensitivity. This work uses the perturbation approach to overcome this technique's flaw, which is that Q-factor and resonant frequency are affected by the resonator's dielectric properties. This suggested sensor operated at 2.5GHz between 1GHz and 4GHz for material characterisation of solid and liquid samples. These sensors were constructed on a substrate made of RT/Duroid Roger 5880, which has a copper layer that is 0.0175 mm thick and has a dielectric constant of 2.2. This square split ring resonator (SSRR) sensor thus generates narrower resonant, low insertion loss, and a high Q-factor value of 430 at 2.5GHz. The SSRR sensor's sensitivity is 98.59%, which is higher than that of past studies. The application of the suggested sensor as a tool for material characterisation, particularly for identifying material attributes, is supported by this findings.

Publisher

EMITTER International Journal of Engineering Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3