Analysis of control factors and surface integrity during wire-EDM of Inconel 718 alloy using T-GRA approach

Author:

Md Ehsan Asgar ,Singholi Ajay Kumar Singh

Abstract

In today’s competitive modern manufacturing sectors, there is a vital need of utter precision and rigorous processing using various manufacturing approaches that directly influences the cost and processing duration of mechanized materials in addition to the consistency of the finished products. Therefore, it’s essential to figure out the required output by adjusting the control factors of any machining techniques which resulted in optimal values of the desired outcome. In this study, machining evaluation and process optimization is carried out on volumetric extraction of material namely material removal rate (MRR), kerf obtained during the machining (KW) and surface roughness (SR) of Inconel 718 superalloy during CNC controlled wire- electrical discharge machining. Four controllable factors- pulse interval, wire speed, pulse duration and peak current are considered to investigate the influence on performance measures. Taguchi's L16 has been used to construct the set of experiments before physical experimental runs and most influencing factors have been evaluated using ANOVA. SEM images and EDXS analysis have been resorted to examine the morphology of Inconel 718. These findings assist in identifying the topography of the machined surface. Further, the optimum integration has been obtained for the best yield and recorded using grey relational analysis integrated with Taguchi’s technique (T-GRA). The unfamiliarity of the work is based on consideration of zinc coated thin wire electrode and Taguchi-Grey combined approach of modelling with four levels of experimental design.

Publisher

EMITTER International Journal of Engineering Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3