Design and Implementation of Embedded Water Quality Control and Monitoring System for Indoor Shrimp Cultivation

Author:

Natan Oskar,Gunawan Agus IndraORCID,Dewantara Bima Sena BayuORCID

Abstract

Maintaining the water quality of a pond is one of the main issues on aquaculture management. Water quality represents the condition of a pond based on several water parameters such as dissolved oxygen (DO), temperature, pH, and salinity. All of these parameters need to be strictly supervised since it affects the life-sustainability of cultivated organisms. However, DO is said to be the main parameter since it affects the growth and survival rate of the shrimp. Therefore, a water quality control and monitoring system is needed to maintain water parameters at acceptable value. The system is developed on a mini-PC and microcontroller which are integrated with several sensors and actuator forming an embedded system. Then, this system is used to collect water quality data that is consisting of several water parameters and control the DO as the main parameter. In accordance with the stability needs against the sensitive environment, a fuzzy logic-based controller is developed to maintain the DO rate in the water. This system is also equipped with SIM800 module to notice the farmer by SMS, built-in wifi module for web-based data logging, and improved with Android-based graphical user interface (GUI) to perform user-friendly monitoring. From the experiment results, a fuzzy controller that is attached to the system can control the DO at the acceptable value of 6 ppm. The controller is said to have high robustness since its deviation for long-time use is only 0.12 ppm. Another test shows that the controller is able to overcome the given disturbance and easily adapt when the DO’s set point is changed.  Finally, the system is able to collect and store the data into cloud storage periodically and show the data on a website.

Publisher

EMITTER International Journal of Engineering Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Innovative Design of Indoor VR Based on Machine Vision;Lecture Notes on Data Engineering and Communications Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3