Comparative Evaluation of VAEs, VAE-GANs and AAEs for Anomaly Detection in Network Intrusion Data

Author:

Mohamed Mahmoud

Abstract

With cyberattacks growing in frequency and sophistication, effective anomaly detection is critical for securing networks and systems. This study provides a comparative evaluation of deep generative models for detecting anomalies in network intrusion data. The key objective is to determine the most accurate model architecture. Variational autoencoders (VAEs), VAE-GANs, and adversarial autoencoders (AAEs) are tested on the NSL-KDD dataset containing normal traffic and different attack types. Results show that AAEs significantly outperform VAEs and VAE-GANs, achieving AUC scores up to 0.96 and F1 scores of 0.76 on novel attacks. The adversarial regularization of AAEs enables superior generalization capabilities compared to standard VAEs. VAE-GANs exhibit better accuracy than VAEs, demonstrating the benefits of adversarial training. However, VAE-GANs have higher computational requirements. The findings provide strong evidence that AAEs are the most effective deep anomaly detection technique for intrusion detection systems. This study delivers novel insights into optimizing deep learning architectures for cyber defense. The comparative evaluation methodology and results will aid researchers and practitioners in selecting appropriate models for operational network security.

Publisher

EMITTER International Journal of Engineering Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3