Optimizing Task Scheduling in Cloud Computing Environments using Hybrid Swarm Optimization

Author:

Kumar Niraj,Dugal Upasana,Singh Akanksha

Abstract

Cloud computing has revolutionized the Information Technology (IT) landscape by offering on-demand access to a shared pool of computing resources over the internet. Effective task scheduling is pivotal in optimizing resource utilization and enhancing the overall performance of cloud systems. Tasks are allocated to virtual machines (VMs) based on a server's workload capacity, aiming to minimize traffic congestion and waiting times. Although Particle Swarm Optimization (PSO) is currently the most effective algorithm for task scheduling in cloud environments, this study introduces a Hybrid Swarm Optimization (HSO) algorithm that combines the strengths of PSO and Salp Swarm Optimization (SSO). The proposed hybrid algorithm addresses the challenges associated with task scheduling in cloud computing. The performance of the HSO algorithm is evaluated using the CloudSim simulator and compared against traditional scheduling algorithms. Simulation results indicate that the hybrid PSO-SSO algorithm outperforms existing methods regarding makespan time, cloud throughput, and task execution efficiency. Consequently, the hybrid approach significantly improves resource utilization and overall system performance in cloud computing environments.

Publisher

Global Academic Digital Library

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3