Simulation of irrigation in southern Ukraine incorporating soil moisture state in evapotranspiration assessments

Author:

BOHAİENKO Vsevolod1ORCID,MATİASH Tetiana2ORCID,ROMASHCHENKO Mykhailo2ORCID

Affiliation:

1. VM Glushkov Institute of Cybernetics of NAS of Ukraine, Kyiv, Ukraine

2. Institute of Water Problems and Land Reclamation of NAASU, Kyiv, Ukraine

Abstract

The paper studies the accuracy of modeling moisture transport under the conditions of sprinkler irrigation using evapotranspiration assessment methods that take into account the soil moisture conditions. Appropriate modifications of the Penman-Monteith and the Priestley-Taylor models are considered. Moisture transport modeling is performed using the Richards equation in its integer- and fractional-order forms. Parameters identification is performed by the particle swarm optimization algorithm based on the readings of suction pressure sensors. Results for the two periods of 11 and 50 days demonstrate the possibility of up to ~20% increase in the simulation accuracy by using a modified Priestley-Taylor model when the maintained range of moisture content in the root layer is 70%-100% of field capacity. When irrigation maintained the range of 80%-100% of field capacity, moisture content consideration within evapotranspiration assessment models did not enhance simulation accuracy. This confirms the independence of evapotranspiration from soil moisture content at its levels above 80% of field capacity as in this case actual evapotranspiration reaches a level close to the potential one. Scenario modeling of the entire growing season with the subsequent estimation of crop (maize) yield showed that irrigation regimes generated using evapotranspiration models, which take into account soil moisture data, potentially provide higher yields at lower water supply.

Publisher

Eurasian Journal of Soil Sciences

Subject

Plant Science,Soil Science,Environmental Science (miscellaneous),Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3