Reducing nitrogen fertilizer combined with biochar amendment improves soil quality and increases grain yield in the intensive rice cultivation system

Author:

LONG Vu Van1ORCID,DUNG Tran Van2ORCID

Affiliation:

1. Faculty of Natural Resources-Environment, Kien Giang University, Kien Giang, 91752, Vietnam

2. Faculty of Soil Science, College of Agriculture, Can Tho University, Can Tho, 94100, Vietnam

Abstract

Intensive rice cultivation for a long time resulted in increasing soil degradation and less yield. This study aimed to evaluate effects of the combining reducing nitrogen fertilizer (N) with biochar amendment on soil chemical properties, rice growth parameters, and grain yield in the rice cultivation system in the Mekong Delta region, Vietnam (VMD). Field experiment was designed in the split-plot design with two factors, including N fertilizer (main plot) and biochar (sub-plot). Two N fertilizer rates were: (N50)—50 kg N ha–1 and (N100)—100 kg N ha–1, which is the farmer's practice. Biochar was amended with three rates: no applied biochar (B0), 5 t ha–1 (B5), and 10 t ha–1 (B10). The results indicated that reducing N fertilizer by 50% combined 5–10 t biochar ha–1 resulted in maintaining soil pH, soil electrical conductivity, soil organic carbon, cation exchange capacity, and rice biomass. Applying biochar at a rate of 5–10 t ha–1 significantly increased the available N, available P, and rice height compared to the treatment with no applied biochar (B0). Rice yield in the treatments applied with 5–10 t ha–1 was significantly higher than the treatment without the use of biochar by 11.6–14.7%. The findings of this study confirmed that reducing 50% N fertilizer combined with 5 t ha–1 or 10 t ha–1 of biochar could improve soil available N, available P, rice growth, and grain yield in intensive rice cultivation systems in the VMD region.

Publisher

Eurasian Journal of Soil Sciences

Subject

Plant Science,Soil Science,Environmental Science (miscellaneous),Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3