Seasonal fluctuations in phthalates’ contamination in pond water: A case study
-
Published:2023-01-01
Issue:1
Volume:12
Page:19-27
-
ISSN:2147-4249
-
Container-title:EURASIAN JOURNAL OF SOIL SCIENCE (EJSS)
-
language:en
-
Short-container-title:EJSS
Author:
RAJPUT Sneh1, KUMARİ Arpna1, SHARMA Ritika1, RAJPUT Vishnu D.2, MİNKİNA Tatiana2, ARORA Saroj1, KAUR Rajinder1
Affiliation:
1. Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India 2. Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don, Russia
Abstract
Phthalates are endocrine disruptors, reported to cause deformities and reproductive damages in animals. Numerous studies reported the presence of phthalates in water samples of rivers, wetlands, and estuaries, while the scenario in case of ponds is different, however they are reported as an integral part of biosphere. In this study, the level of phthalates’ contamination in the water samples collected from the different ponds of Amritsar district for four consecutive seasons in two years was analysed. The maximal level of phthalate contamination was found in samples collected during the monsoon season (July 2015) of first year of sampling followed by post-monsoon (October 2015) and winter season (January 2016). S8 sampling site was found to be the most phthalate contaminated site followed by S1=S11>S2=S9=S4=S5=S7>S6=S3>S10. Benzyl butyl phthalate was most abundant (found in 32% water samples) followed by di-n-butyl and dimethyl phthalate, while diallyl phthalate and diethyl phthalate were not detected. The two main drivers for these seasonal variations were observed to be temperature and precipitation. Hence, this data will be useful to explain the temporal and spatial distributions of phthalates in aquatic ecosystem, as well as to devise cost-effective ways to reduce their ecological footprints.
Publisher
Eurasian Journal of Soil Sciences
Subject
Plant Science,Soil Science,Environmental Science (miscellaneous),Agronomy and Crop Science
Reference85 articles.
1. Abtahi, M., Dobaradaran, S., Torabbeigi, M., Jorfi, S., Gholamnia, R., Koolivand, A., Saeedi, R., 2019. Health risk of phthalates in water environment: occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran. Environmental Research 173: 469-479. 2. Ahuactzin-Pérez, M., Tlecuitl-Beristain S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M.C., Sánchez, C., 2018a. A novel biodegradation pathway of the endocrine-disruptor Di(2-ethyl Hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicology and Environmental Safety 147: 494-499. 3. Ahuactzin-Pérez, M., Tlécuitl-Beristain, S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M.C., Sánchez, C., 2018b. Kinetics and pathway of biodegradation of dibutyl phthalate by Pleurotus ostreatus. Fungal Biology 122: 991-997. 4. Ajay, K., Behera, D., Bhattacharya, S., Mishra, P.K., Ankit, Y., Anoop, A., 2021. Distribution and characteristics of microplastics and phthalate esters from a freshwater lake system in Lesser Himalayas. Chemosphere 283: 131132. 5. Bornehag, C.G., Sundell, J., Weschler, C.J., Sigsgaard, T., Lundgren, B., Hasselgren, M., Hägerhed-Engman, L., 2004. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case–control study. Environmental Health Perspectives 112: 1393-1397.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|