Use of neural networks in the problems of operation and repair of rolling stock of electric transport

Author:

Zubenko D.1,Zakurday S.1,Donets O.1

Affiliation:

1. O.M. Beketov National University of Urban Economy in Kharkiv

Abstract

Deep neural networks have achieved great success in controlled learning problems, and MIL as a typical poorly controlled learning method is effective for many applications in computer vision, biometrics, natural language processing, etc. In this article, we review several neural networks with multiple instances ( MINN), which neural networks seek to solve MIL problems. MINNs perform MILs in the end, which take bags with different numbers of instances as input and directly output the tags of the bags. All parameters in MINN can be optimized by back propagation. In addition to revising old MINNs, we offer a new type of MINN for exploring bag representations, which differs from existing MINNs that focus on the evaluation of an instance label. In addition, recent tricks developed in deep learning have been studied in MINN; we find that deep supervision is effective for a better understanding of bag views. In experiments, the proposed MINNs achieve the most advanced or competitive performance on several MIL tests. Moreover, for testing and learning it is very fast, for example, it takes only 0.0.0 03 s to predict the bag and a few seconds to learn on the MIL datasets on a moderate processor. Initially, several instances (MILs) were proposed to predict bounce activity [1]. Now it is widely applied to many domains and is an important problem in computer training. Many multimedia data have a multiplier (MI) structure; For example, a text article contains several paragraphs, the image can be divided into several local areas, and gene expression data contains several genes. MIL is useful for processing and understanding MI data. Studying multiple instances is a type of weak controlled learning (WSL). Each sample is executed in the form of labeled data, which consist of a wide variety of instances associated with the functions of input. The purpose of MIL in the dual task is to prepare a classifier for prediction of test packet labels, based on the assumption that there is a positive packet and contains at least one positive instance, while the data is negative if it consists only of negative instances.

Publisher

O.M.Beketov National University of Urban Economy in Kharkiv

Subject

General Medicine

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3