DEVELOPMENT OF THE CONTROL ALGORITHM OF THE METHODOLOGY OF EMERGENCY PREVENTION ON LANDFILL WITH LIQUIDATION ENERGY-INTENSIVE TECHNOLOGICAL EQUIPMENT

Author:

Rashkevich N.1ORCID

Affiliation:

1. National University of Civil Defence of Ukraine

Abstract

Landfills taking into account current trends in the placement of innovative liquidation technologies on their territory with a variety of energy-intensive technological equipment pose an additional technogenic danger. This requires a set of measures to prevent emergencies of the cascade type of distribution, due to the shift of the slope of the waste masses with the subsequent explosion of biogas. Analysis of existing approaches to modeling the conditions of solid waste landfills proves the lack of comprehensive studies to assess the effectiveness of solid waste landfills in the case of the introduction of additional technological energy-intensive technological equipment. In the course of the work the author considers the physical conditions of emergency prevention at the landfill in the conditions of a separate task of involving liquidation energy-intensive technological equipment. Depending on the location of the specified equipment in relation to the landfill, emergencies of cascade type may occur due to the shift of waste masses with the subsequent explosion of biogas. In the course of the work the author developed a control algorithm for the implementation of a mathematical model of cascade type emergency prevention at solid waste landfills with liquidation energy-intensive technological equipment due to loss of stability of the slope of the waste array to landslide followed by biogas explosion. The control algorithm consists of 18 analytical blocks, which are located on two levels and are interconnected by direct and feedback. In order to further practical application of the control algorithm, it is necessary to develop an appropriate methodology, the implementation of which should effectively counteract the emergency situation with priority consequences, such as the number of victims, the number of deaths, the number of people with impaired living conditions. Keywords: landfill, emergency prevention, liquidation energy-intensive technological equipment, explosion, landslide

Publisher

O.M.Beketov National University of Urban Economy in Kharkiv

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference25 articles.

1. 1. Rashkevich, N.V, Cherepnev, І.А., Kovalev, I.О. (2019). Method of fire detecting at a municipal solid waste landfill. Engineering of nature management, Seriya: Tekhnichni nauky ta arkhitektura, 3 (13), 102–109.

2. 2. Lavigne, F., Wassmer, P., Gomez, C., Davies, T., Hadmoko, D.S., T Yan W M Iskandarsyah, … Pratomo, I. (2014). The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia. Geoenvironmental Disasters, 1, 10.

3. 3. Rashkevich, N.V. (2019). Analysis of technogenic danger of solid waste management technologies. Naukovo-tekhnichnyy zbirnyk «Komunalʹne hospodarstvo mist», 152, 58–66.

4. 4. Huvaj-Sarihan, Nejan, Stark, Timothy D. (2008). Back-Analyses of Landfill Slope Failures. International Conference on Case Histories in Geotechnical Engineering. 12.

5. 5. Dou, J., Oguchi, T., Hayakawa, Y.S., Uchiyama, S., Saito, H., Paudel, U. (2014). Susceptibility Mapping Using a Certainty Factor Model and Its Validation in the Chuetsu Area, Central Japan. Landslide Sci a Safer Geoenvironment, 2, 483–489.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3