FORECASTING THE AEROIN COMPOSITION OF AIR IN THE PRESENCE OF NATURAL AND ARTIFICIAL SOURCES OF IONIZATION

Author:

Frolov V.1ORCID,Panova O.1ORCID,Zozulya S.2ORCID

Affiliation:

1. Kyiv National University of Construction and Architecture

2. National Aviation University

Abstract

It is shown that for the design of buildings and individual rooms with normative concentrations of light air ions of both polarities, a preliminary estimated assessment of the dynamics of this indicator in space and time is appropriate. In the general case, it is possible to use the continuity equation for weakly ionized plasma for one direction. This is due to the low concentration of air ions in the air. The ratio of molecular kinetic theory of gases is used to determine the necessary indicators - the average lifetime of air ions, free path length. To determine the average speed - Maxwell's distribution. It is shown that the propagation of air ions due to diffusion processes is insignificant, and the corresponding calculations have large errors. Calculations on the propagation of air ions by directed air movement from the source of artificial ionization are given. The distribution of air ion concentrations can be most accurately calculated taking into account their recombination, deposition on heavy air ions and neutral suspended parts (fine dust and aerosols). Relevant coefficients are mostly issued from reference sources. If there are electrostatic fields in the premises, generated due to the triboelectric effect and other factors, it is necessary to take into account the deposition of air ions on these surfaces. In order to correctly determine the concentrations of air ions, in addition to the values of the mobility of negative and positive air ions, data on electrostatic field strengths are required. The values of such fields are unpredictable, so they are measured by appropriate instruments in similar conditions. Verification of calculated data using electrostatic charge meters and air ion counter proved the reasonable convergence of expected and actual data. It is advisable to develop two- and three-dimensional models of the propagation of air ions of both polarities in rooms of different purposes, configurations of equipment placement, the presence of artificial ionization sources and directional air movement.

Publisher

O.M.Beketov National University of Urban Economy in Kharkiv

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference9 articles.

1. Marchenko, V.G. (2015). Research of the temperature and humidity processes in the air conditioning apparatus varying air ion concentration. Problemele Energeticii Regionale, 3(29), 86–91. [in Russian]

2. Magnier-Bergeron, L., Derome, D., Zmeureanu, R. (2017). Three-dimensional model of air speed in the secondary zone of displacement ventilation jet. Building and Environment, 114, 483–494. DOI: https://doi.org/10.1016/j.buildenv.2017.01.003

3. Belyaev, N.N., Cygankova, S.G. (2015). Matematicheskoe modelirovanie aeroionnogo rezhima v pomeshenii pri iskusstvennoj ionizacii vozduha. Stroitelstvo, materialovedenie, mashinostroenie, 83, 40–46. [in Russian]

4. Kuzmichev, V.E. (1989). Zakony i formuly fiziki. Kiev, Naukova dumka. [in Russian]

5. Fletcher, L.A., Noakes, C.J., Sleigh, P.A., Beggs, C.B., Shepherd, S.J. (2008). Air Ion Behavior in Ventilated Rooms. Indoor and Built Environment, 17(2), 173–182. DOI: https://doi.org/10.1177/1420326x08089622

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3