Affiliation:
1. O. M. Beketov National University of Urban Economy in Kharkiv
Abstract
Composite polymer reinforcement (CPA) is increasingly applied in modern building industry. The areas of application of CPA are determined by the special properties of this material, such as stability in aggressive environments, magnetic inertness, low thermal conductivity. Glass composite reinforcement (GCR) are in the greatest demand, due to the availability of chemically resistant fiberglass and wide industrial elaboration of the GCR manufacturing technology. However, the relatively low modulus of elasticity, which does not exceed 50 GPa, is an obstacle to its application in concrete structures, that operate on bending.
Proposed solution for increasing of modulus of elasticity of composite polymer reinforcement is the creation of combined reinforcement based on low-modulus and high-modulus fibers impregnated with epoxy polymer binder.Achieving the goal made it possible to establish trends for increasing the modulus of elasticity of composite reinforcement based on glass and carbon fibers with the use of an epoxy polymer matrix by evaluating the optimal ratio of the components of the epoxy binder within the framework of the well-known technology of the fillerless manufacturing method.
It has been established that one of the methods of increasing the modulus of elasticity of composite reinforcement is the modification of the thermosetting polymer binder with a reactive diluent - diglycidyl ether of the epichlorohydrin homooligomer. The action of the latter is based on its ability, in small quantities, to influence the structure of the matrix epoxy anhydride binder net, ensuring a relatively high yield of the sol fraction under the conditions of a shortened period of hardening time, provided for by the technology of obtaining composite reinforcement.
It is shown that in the presence of hybrid reinforcement and the optimal amount of the modifier, it is possible to achieve an elastic modulus of 50 GPa, which, in our opinion, is due to the implementation of increased adhesive contact with glass and carbon fibers and ensuring the necessary monolithicity of the polymer composite.
Keywords: composite polymer reinforcement, glass and carbon fiber, modulus of elasticity, adhesive strength.
Publisher
O.M.Beketov National University of Urban Economy in Kharkiv
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献