Affiliation:
1. MUNZUR ÜNİVERSİTESİ
2. SÜLEYMAN DEMİREL ÜNİVERSİTESİ
Abstract
Su sertliği; özellikle içme suları, endüstri suları ve hizmet suyu alanlarında kullanım hususunda önemli bir kalite özelliğidir. Kalsiyum (Ca), magnezyum (Mg) ve bikarbonat (HCO3) tuzları ile suyun geçici sertliği; klor (CL), fosfat (PO43), nitrat (NO3), sülfat (SO4) ve silikat tuzlarıyla da suyun kalıcı sertliği oluşmaktadır. Çalışmada, Fırat Havzası üzerinde bulunan 2119 nolu Kemahboğazı akım gözlem istasyonu (AGİ) için Anfis modelleri ile su sertliğinin tahmin edilmesi amaçlanmıştır. Bu amaçla Na, K, CO3, HCO3, CL, SO4, EC, sıcaklık (T), pH ve su miktarı (SM) verileri girdi olarak kullanılmıştır. Ancak modeller oluşturulurken parametre sayısının fazla olması kurulacak Anfis modellerinin sayısını arttırmakta ve bu modeller içerisinden en iyi modeli seçmeyi de zorlaştırmaktadır. Bu zorluğun üstesinden gelebilmek için Anfis modellerinde kullanılacak etkili parametrelerin belirlenebilmesi için çoklu regresyon modeli kurulmuştur. Oluşturulan çoklu regresyon modeline her parametre sırası ile eklenerek Düzeltilmiş R² değerlerindeki değişmeler gözlemlenerek Anfis modelinde kullanılacak etkili parametreler belirlenmiştir. Çoklu regresyon sonucu girdi parametrelerinin CL, EC, HCO3 ve SO4 olarak seçilmesine karar verilmiştir. Çalışmanın ikinci kısmında bu parametrelerin farklı kombinasyon ve alt küme sayıları ile Anfis modellemeleri oluşturulmuştur. Tüm sonuçlar eğitim ve test verileri için R², ağırlıklı karesel hata ve Wilcoxon testi değerleri belirlenmiş ve su sertliğinin belirlenmesinde kullanılabilecek modeller gösterilmiştir.
Publisher
Afyon Kocatepe Universitesi Fen Ve Muhendislik Bilimleri Dergisi
Reference43 articles.
1. Ahmed, A. and Shah, S., 2017. Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. Journal of King Saud University-Engineering Sciences, 29(3), 237-243.
2. Aksakal, A. ve Gündoğay, A., 2022. Determınatıon Of Column Curvature Ductılıty By Multıple Regressıon Analysıs. Ist-International Congress on Modern Sciences Tashkent, Uzbekistan, 395-403.
3. Alver, A. ve Baştürk, E., 2019. Karasu Nehri Su Kalitesinin Farklı Su Kalitesi İndeksleri Açısından Değerlendirilmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 488-497.
4. Areerachakul, S. 2012. Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water. International Journal of Chemical and Biological Engineering, 6, 286-290.
5. Aşıkkutlu, B., Akköz, C. ve Öztürk, B., 2014. Çavuşçu Gölü’nün (Konya/Ilgin) bazi su kalite özellikleri. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 39, 1-9.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献