Otokodlayıcı Tabanlı Boyut Azaltma ve Akıllı Saat Tabanlı Giyilebilir Hareket Algılayıcıları Kullanarak Yaşlılarda Düşme Tespiti

Author:

SAĞBAŞ Ensar Arif1ORCID,BALLI Serkan2ORCID

Affiliation:

1. MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

2. MEHMET AKİF ERSOY ÜNİVERSİTESİ, BUCAK TEKNOLOJİ FAKÜLTESİ

Abstract

Falling is a serious health risk that can even result in death, especially for the elderly. For this reason, it is crucial to prevent falls and, in cases where prevention is not possible, to detect and intervene as soon as possible. Smartwatches are an ideal tool for fall detection due to their constant presence, rich sensor resources, and communication capabilities. The aim of this study is to detect falls in elderly people with high accuracy using motion sensor data obtained from smartwatches. To achieve this, a dataset was created consisting of falls and daily activities. Then, the feature vector was extracted which has provided successful results in signal processing studies. Afterward, the dimensionality of the dataset was reduced using an autoencoder-based approach in order to decrease the workload on smartwatches and ensure more accurate and faster classification. The dataset was classified using machine learning methods including naive Bayes, logistic regression, and C4.5 decision tree, and successful results were obtained. Their performances were then compared. It was observed that reducing the dimensionality had positive effects on both the classification accuracy and the computation time.

Funder

Muğla Sıtkı Koçman Üniversitesi

Publisher

Afyon Kocatepe Universitesi Fen Ve Muhendislik Bilimleri Dergisi

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3