Censorship of Profanity Words in Turkish Social Media Texts with Named Entity Recognition Models

Author:

NASİBOGLU Resmiye1,GENCER Mustafa1

Affiliation:

1. DOKUZ EYLÜL ÜNİVERSİTESİ

Abstract

Adlandırılmış varlık tanıma problemi, veri çıkarımı, doğal dil işleme ve metin madenciliği gibi alanların alt dalı olarak ele alınmaktadır. Adlandırılmış varlık tanıma, yapılandırılmamış metinlerdeki varlık isimlerinin uygunluklarına göre önceden belirlenen kişi ismi, organizasyon ismi veya yer ismi gibi sınıflara atama yapmak için kullanılan bir araçtır. Gelişen teknoloji ile birlikte sosyal ağlar çok insan tarafından kullanılmaktadır. Sosyal medya kullanan kişiler her türlü resim, metin veya video içeriklerini paylaşabilmektedir. Paylaşılan bu içerikler ise bazen uygunsuz yani aile yapısını etkiler nitelikte olabilmektedir. Bu çalışmada, Twitter’daki Türkçe tweetler kullanılarak küfür, hakaret ve uygunsuz kelimeler adlandırılmış varlık tanıma problemi olarak ele alınmış ve bu kelimeler farklı yöntemler ile tespit edilmeye çalışılmıştır. Çalışmada, önce metinlerde geçen kelime ve kelime öbekleri etiketlenmiş daha sonra ise etiketlenen kelimeler vektörleştirilmiştir. Vektörler, Bi-LSTM ve öneğitimli BERT modelleri kullanılarak eğitim yapılmıştır. Bi-LSTM modeli hem eğitimde hem de test aşamasında %99‘a yakın doğruluk oranı sergilemiştir. BERT modeli ise eğitim aşamasında %99 civarında doğruluk oranı gösterirken, test başarısının %95 civarında olduğu gözlemlenmiştir. Çalışma hızı açısından, Bi-LSTM modelinin BERT modelinden yaklaşık olarak 3 kat daha hızlı olduğu görülmüştür.

Publisher

Afyon Kocatepe Universitesi Fen Ve Muhendislik Bilimleri Dergisi

Subject

General Engineering

Reference45 articles.

1. Bowden, K. K., Wu, J., Oraby, S., Misra, A., and Walker, M., 2018. SlugNERDS: A named entity recognition tool for open domain dialogue systems. arXiv preprint arXiv:1805.03784.

2. Çelik, A. and Yıldırım, B., 2020. Turkish profanity detection enhanced by artificial intelligence. 28th Signal Processing and Communications Applications Conference (SIU), 1-4. IEEE.

3. Deepak, G., Teja, V., and Santhanavijayan, A., 2020. A novel firefly driven scheme for resume parsing and matching based on entity linking paradigm. Journal of Discrete Mathematical Sciences and Cryptography, 23(1), 157-165.

4. Devlin, J., Chang, M. W., Lee, K., and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

5. Grishman, R., 1995. The NYU System for MUC-6 or Where's the Syntax?, New York Unıv, Ny, Dept. Of Computer Scıence.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3