Elliptic Inversions in Taxicab Geometry

Author:

Can Zeynep1ORCID

Affiliation:

1. Aksaray University

Abstract

The goal of this research is to introduce inversion with respect to an ellipse which is a generalization of the classical circular inversion in taxicab plane and to investigate general properties and basic concepts of this transformation in taxicab geometry. The cross ratio is preserved under the elliptic inversion in taxicab plane though this transformation is not an isometry. Thus some properties such as cross ratio and harmonic conjugates of the elliptic inversions in R_T^2 are also studied.

Publisher

Afyon Kocatepe Universitesi Fen Ve Muhendislik Bilimleri Dergisi

Reference15 articles.

1. Akça, Z. and Kaya, R., 1997. On the Taxicab Trigonometry. Journal of Inst. of Math. & Comp. Sci., 10(3), 151-159. Bayar, A. and Ekmekçi, S., 2014. On Circular Inversions in Taxicab Plane. J. Adv. Res. Pure Math., 6, 33-39. https://doi.org/10.5373/jarpm.1934.013114

2. Blair, D., 2000. Inversion Theory and Conformal Mapping, Student Mathematical Library, American Mathematical Society. Chen, G., 1992. Lines and Circles in Taxicab Geometry, M.S. thesis, Department of Mathematics and Computer Science, Centered Missouri State University. Childress, N., 1965. Inversion with Respect to the Central Conics. Math. Mag., 38(3). https://doi.org/10.1080/0025570X.1965.11975615

3. Divjak, B., 2000. Notes on Taxicab Geometry. Scientific and Professional Information Journal of Croatian Society for Constructive Geometry and Computer Graphics (KoG), 5, 5-9. Gelişgen, Ö., 2007. On the Minkowski Geometries: A General Analysis About Taxicab, Chinese Checkers and -Geometries, Phd Thesis, Eskişehir Osmangazi University, 163. Gelişgen , Ö. and Ermiş, T., 2019. Some Properties of Inversions in the Alpha Plane. Forum Geometricorum, 19, 1-9. Ho, Y. P. and Lıu, Y., 1996. Parabolas in Taxicab Geometry. Missouri J. of Math. Sci., 8, 63-72. Kaya, R., 2004. Area Formula For Taxicab Triangles. Pi Mu Epsilon, 12(4), 219-220.

4. Krause, E.F., 1975. Taxicab Geometry, Addision-Wesley.

5. Laatsch, R., 1982. Pramidal Sections in Taxicab Geometry. Mitt. Math. Magazine, 55, 205-212.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3