Technology independent optimization when implementing sparse systems of disjunctive normal forms of Boolean functions in ASIC

Author:

Bibilo P. N.1,Kardash S. N.1

Affiliation:

1. The United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Abstract

Objectives. The problem of choosing the best methods and programs for circuit implementation as part of digital ASIC (Application-Specific Integrated Circuit) sparse systems of disjunctive normal forms (DNF) of completely defined Boolean functions is considered. For matrix forms of sparse DNF systems, the ternary matrix specifying elementary conjunctions contains a large proportion of undefined values corresponding to missing literals of Boolean input variables, and the Boolean matrix specifying the occurrences of conjunctions in DNF functions contains a large proportion of zero values.Methods. It is proposed to investigate various methods of technologically independent logical optimization performed at the first stage of logical synthesis: joint minimization of systems of functions in the DNF class, separate and joint minimization in classes of multilevel representations in the form of Boolean networks and BDD representations using mutually inverse cofactors, as well as the division of a system of functions into subsystems with a limited number of input variables and the method of block cover of DNF systems, focused on minimizing the total area of the blocks forming the cover.Results. When implementing sparse DNF systems of Boolean functions in ASIC, along with traditional methods of joint minimization of systems of functions in the DNF class, methods for optimizing multilevel representations of Boolean function systems based on Shannon expansions can be used for technologically independent optimization, while separate minimization and joint minimization of the entire system as a whole turn out to be less effective compared with block partitions and coatings of the DNF system and subsequent minimization of multilevel representations. Schemes obtained as a result of synthesis using minimized representations of Boolean networks often have a smaller area than schemes obtained using minimized BDD representations.Conclusion. For the design of digital ASIC, the effectiveness of combined approach is shown, when initially the block coverage programs of the DNF system is used, followed by the use of programs to minimize multilevel block representations in the form of Boolean networks minimized based on Shannon expansion.

Publisher

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Reference32 articles.

1. Tarasov I. E. PLIS Xilinx. Yazyki opisaniya apparatury VHDL i Verilog, SAPR, priemy proektirovaniya. XILINX FPGA. Hardware Description Languages VHDL and Verilog, CAD, Design Techniques. Moscow, Goryachaya liniya – Telekom, 2020, 538 р. (In Russ.).

2. Zakrevskij A. D. Logicheskij sintez kaskadnyh skhem. Logical Synthesis of Cascading Circuit. Moscow, Nauka, 1981, 416 р. (In Russ.).

3. Brayton K. R., Hachtel G. D., McMullen C., Sangiovanni-Vincentelli A. L. Logic Minimization Algorithm for VLSI Synthesis. Boston, Kluwer Academic Publishers, 1984, 193 p.

4. Zakrevskij A. D. (ed.). Sintez asinhronnyh avtomatov na EHVM. Synthesis of Asynchronous Automata on a Computer. Minsk, Nauka i tekhnika, 1975, 184 р. (In Russ.).

5. Brayton R. K., McMullen C. T. The decomposition and factorization of Boolean expressions. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 1982), Rome, Italy, 10–12 May 1982. Rome, 1982, pp. 49–54.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3