Recognition of fabric composition of clothing in an image in e-commerce using neural networks

Author:

Sorokina V. V.1ORCID

Affiliation:

1. Belarusian State University

Abstract

Objectives. Development of new approach for recognizing the fabric composition of clothing in e-commerce images by using generative adversarial network(GAN) to generate synthetic images of clothing with known fabric composition, to be used to train the CNN to classify the fabric composition of real clothing images. Instead of a classic clothing image, a copy is generated with the material zoomed to fibers and fabric structure.Methods. The main methods to recognize the fabric composition of the clothing image in the e-commerce are the creation and annotation of a dataset for the neural network training, synthesis of the fabric of clothing, the choice of architecture and its modification, validation and testing, and interpretation of the results.Results. Experimental results with the constructed method show that it is effective for accurately recognizing the fabric composition of e-commerce clothing to be used to improve search and browsing on websites.Conclusion. In the course of the experiment, using a generative adversarial network, a data set of e-commerce products was synthesized and annotated, neural networks were built to recognize the composition of the fabric of clothing items. The results of the study showed that the new approach for recognizing the fabric of clothing provides higher accuracy in comparison with already known methods, in addition, the use of the attention model also gives good results to improve the metrics.

Publisher

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3