Solution of the mixed boundary problem for the Poisson equation on two-dimensional irregular domains

Author:

Chuiko M. M.1,Korolyova O. M.2

Affiliation:

1. Institute of Mathematics of the National Academy of Sciences of Belarus

2. Belarusian National Technical University

Abstract

Objectives. A finite-difference computational algorithm is proposed for solving a mixed boundary-value problem for the Poisson equation given in two-dimensional irregular domains.Methods. To solve the problem, generalized curvilinear coordinates are used. The physical domain is mapped to the computational domain (unit square) in the space of generalized coordinates. The original problem is written in curvilinear coordinates and approximated on a uniform grid in the computational domain.The obtained results are mapped on non-uniform boundary-fitted difference grid in the physical domain.Results. The second order approximations of mixed Neumann-Dirichlet boundary conditions for the Poisson equation in the space of generalized curvilinear coordinate are constructed. To increase the order of Neumann condition approximations, an approximation of the Poisson equation on the boundary of the domain is used.Conclusions. To solve a mixed boundary value problem for the Poisson equation in two-dimensional irregular domains, the computational algorithm of second-order accuracy is constructed. The generalized curvilinear coordinates are used. The results of numerical experiments, which confirm the second order accuracy of the computational algorithm, are presented.

Publisher

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference10 articles.

1. Fletcher C. A. J. Computational Techniques for Fluid Dynamics 2. Springer, 1988, 494 p.

2. Samarskii A. A. Teorija raznostnyh shem. The Theory of Difference Schemes. Moscow, Nauka, 1997, 380 p.

3. Samarskii A. A., Andreev V. B. Raznostnye metody dlja elipticheskih uravnenij. Difference Methods for Elliptic Equations. Moscow, Nauka, 1976, 352 p. (In Russ.).

4. Samarskii A. A., Mazhukin V. I., Matus P. P, Shishkin G. I. Monotone difference schemes for equation with mixed derivatives. Matematicheskoe modelirovanie [Mathematical Models and Computer Simulation], 2001, vol. 13, no. 2, pp. 17–26 (In Russ.).

5. Samarskii A., Matus P., Mazhukin V., Mozolevski I. Monotone difference schemes for equations with mixed derivatives. Computers and Mathematics with Applications, 2002, vol. 44, pp. 501–510. https://doi.org/10.1016/S0898-1221(02)00164-5

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3