Voice activity detection in noisy conditions using tiny convolutional neural network

Author:

Vashkevich R. S.1,Azarov E. S.1

Affiliation:

1. Belarusian State University of Informatics and Radioelectronics

Abstract

The paper investigates the problem of voice activity detection from a noisy sound signal. An extremely compact convolutional neural network is proposed. The model has only 385 trainable parameters. Proposed model doesn’t require a lot of computational resources that allows to use it as part of the “internet of things” concept for compact low power devices. At the same time the model provides state of the art results in voice activity detection in terms of detection accuracy. The properties of the model are achieved by using a special convolutional layer that considers the harmonic structure of vocal speech. This layer also eliminates redundancy of the model because it has invariance to changes of fundamental frequency. The model performance is evaluated in various noise conditions with different signal-to-noise ratios. The results show that the proposed model provides higher accuracy compared to voice activity detection model from the WebRTC framework by Google.

Publisher

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3