Creating and balancing the paths of arbiter-based physically unclonable functions on FPGA

Author:

Shamyna A. Yu.1,Ivaniuk A. A.1

Affiliation:

1. Belarusian State University of Informatics and Radioelectronics

Abstract

Objectives. The problem of constructing a new structure of paths of physically unclonable function of the arbiter type (APUF) on the FPGA is being solved, based on the full use of internal resources of LUT-blocks, which are functionally repeaters. The relevance of the study is associated with the rapid development of physical cryptography tools. Another goal is the developing a methodology for eliminating the asymmetry of the APUF paths associated with the peculiarity of the synthesis of such circuits on the FPGA.Methods. The methods of synthesis of digital devices, their parametric modeling and implementation on rapid prototyping boards are used. A ring oscillator circuit is used to measure the internal propagation delays of signals through the APUF paths.Results. A new structure of the basic element of APUF paths with the use of two functional repeaters is proposed. The necessity of balancing the delays of APUF paths is demonstrated. A technique has been developed to eliminate the asymmetry of signal propagation through APUF paths based on controlled delay lines. The disadvantages of classical approaches as an APUF arbitrator and the need for their modification are shown.Conclusion. The proposed approach to build APUF paths has shown its viability and promise. An improvement in the characteristics of APUF constructed according to the proposed method, as well as a reduction in hardware costs during their implementation compared to classical APUF schemes, is experimentally confirmed. It seems promising to develop the described methodology for constructing the APUF to improve the structure of the arbiter.

Publisher

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference8 articles.

1. Pappu, R. Physical One-Way Functions: PhD Thesis in Media Arts and Sciences. Cambridge, Massachusetts Institute of Technology, 2001, 154 p.

2. Yarmolik V. N., Vashinko Y. G. Physical unclonable functions. Informatika [Informatics], 2011, no. 2(30), pp. 92–103 (In Russ.).

3. Ivaniuk A. A., Zalivaka S. S. Physical cryptography and security of digital devices. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki [Reports of the Belarusian State University of Informatics and Radioelectronics], 2019, no. 2(120), pp. 50–58 (In Russ.).

4. Yang J. , Yu X., Wei R. A low resource consumption Arbiter PUF improved switch component design for FPGA. Journal of Physics: Conference Series, 2022, vol. 2221, р. 012011.

5. Yarmolik V. N., Ivaniuk A. A. Arbiter physical unclonable functions with asymmetric pairs of paths. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki [Reports of the Belarusian State University of Informatics and Radioelectronics], 2022, no. 20(4), рр. 71–79 (In Russ.).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3