A new feature for handwritten signature image description based on local binary patterns

Author:

Starovoitov V. V.1ORCID,Akhundjanov U. Yu.1

Affiliation:

1. The United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Abstract

Objectives. The problem of describing the invariant features of a digital image of handwritten signature that describes the distribution of its local features is considered. The formation of fundamentally new approach to the calculation of such features is described.Methods. Digital image processing methods are used. First an image is converted into a binary representation, then its morphological and median filtering is performed. Then using the method of principal components, the image is rotated to give the signature a horizontal orientation. A rectangle describing the signature is cut out, then it is scaled to the template of a certain size. In the article the template of 300×150 pixels was used. Then the border of the signature is formed. Local binary patterns are calculated from its binary contour, i.e. each pixel is assigned a number from 0 to 255, which describes the location of the edge pixels in 3×3 neighborhood of each pixel. A histogram of calculated patterns for 256 intervals is formed. The first and last intervals are discarded because they correspond to all black and white pixels in the neighborhood and are not informative. The remaining 254 numbers of the array form new local features of the signature.Results. The studies were performed on the bases of digitized signatures TUIT and CEDAR containing true and fake signatures of 80 persons. The accuracy of correct verification of signatures on these bases was about 78 % and 70 %.Conclusion. The possibility of using the proposed possibilities for solving the problems of verifying the authenticity of handwritten signatures has been experimentally confirmed.

Publisher

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3