Development of a bacterial regulatory motif database

Author:

Skakun V. V.1ORCID,Nikolaichik Y. A.1ORCID

Affiliation:

1. Belarusian State University

Abstract

O b j e c t i v e s . The amount of data generated by modern methods of high-throughput sequencing is such that their analysis is performed mainly in automatic mode. In particular, the use of newly decoded genomic sequences is possible only after the annotation of functional elements of the genome, which, as a rule, is performed by automatic pipelines. Such annotation pipelines do a good job to identify the genes, but none of them annotate regulatory elements. Without these elements it is not possible to understand when and how genes can be expressed. Information on the regulatory elements of bacteria is collected in several specialized databases (RegulonDB, CollecTF, Prodoric2, etc.), however, only a part of this information can be used for annotation of regulatory elements, and only for a very limited range of bacteria. Previously, we proposed a clear formal criterion for applying regulatory information to any bacterial genome. Such a criterion is the CR tag, a sequence of amino acid residues of a transcriptional regulator that specifically contacts the nitrogenous bases of regulatory element in genomic DNA. The mathematical model of a regulatory element (motif) associated with a CR tag can be correctly applied to annotate similar elements in any genomes encoding a transcriptional regulator with an identical CR tag. The accumulation of motifs associated with CR tags raised the question of their ordered storage for the convenience of subsequent use in the annotation of genomic sequences. Since no one of well-known databases uses the concept of CR tags, a new database ought to be developed. Thus, the goal of this work is to create a database with information about bacterial transcription factors and DNA sequences recognized by them, suitable for annotation of regulatory sequences in bacterial genomes.M e t h o d s .  Infological  modeling  of  the  subject  area  was  carried  out  using  the  IDEF1X  methodology. The database was developed using the Microsoft SQL Server DBMS. A cross-platform application for importing data into a database is written in C++ using Qt technology.Re s u l t s . As a result of the study of the subject area, a relational data model was developed and implemented in the Microsoft SQL Server DBMS, which allows holistic storage of information about accumulated transcription regulation motifs in bacteria, including information about the publications confirming their correctness. To automate the process of entering accumulated data, a cross-platform application was developed for importing structured data on transcription factors.Co n c l u s i o n .  The  main difference of  the  developed database is  the  use  of  CR-tag  concept. Records of mathematical models of regulatory elements (motifs) in the database are associated with a CR tag and, therefore, can be correctly used to annotate similar elements in any genomes encoding a transcriptional regulator with an identical CR tag. The developed database will provide structured and holistic data storage, as well as their quick search when used in the pipeline for automatic annotation of regulatory elements in bacterial genomic sequences.

Publisher

United Institute of Informatics Problems of the National Academy of Sciences of Belarus

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3