Abstract
AbstractThe nature of core-collapse supernova (SN) explosions is yet incompletely understood. The present article revisits the scenario in which the release of latent heat due to a first-order phase transition, from normal nuclear matter to the quark–gluon plasma, liberates the necessary energy to explain the observed SN explosions. Here, the role of the metallicity of the stellar progenitor is investigated, comparing a solar metallicity and a low-metallicity case, both having a zero-age main sequence (ZAMS) mass of 75 M$$_\odot $$
⊙
. It is found that low-metallicity models belong exclusively to the failed SN branch, featuring the formation of black holes without explosions. It excludes this class of massive star explosions as possible site for the nucleosynthesis of heavy elements at extremely low metallicity, usually associated with the early universe.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference91 articles.
1. T. Fischer, N.-U. Bastian, D. Blaschke, M. Cierniak, M. Hempel, T. Klähn, G. Martínez-Pinedo, W.G. Newton, G. Röpke, S. Typel, Publ. Astron. Soc. Austr. 34, e067 (2017)
2. J.M. LeBlanc, J.R. Wilson, Astrophys. J. 161, 541 (1970)
3. H.A. Bethe, R. Wilson, James, Astrophys. J. 295, 14 (1985)
4. H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, Phys. Rep. 422, 38 (2007)
5. A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hüdepohl, S. Chakraborty, Nuovo Cimento Rivista Serie 39, 1 (2016)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献