Symmetry reduction of tensor networks in many-body theory

Author:

Tichai A.,Wirth R.,Ripoche J.,Duguet T.

Abstract

AbstractThe ongoing progress in (nuclear) many-body theory is accompanied by an ever-rising increase in complexity of the underlying formalisms used to solve the stationary Schrödinger equation. The associated working equations at play in state-of-the-art ab initio nuclear many-body methods can be analytically reduced with respect to angular-momentum, i.e. SU(2), quantum numbers whenever they are effectively employed in a symmetry-restricted context. The corresponding procedure constitutes a tedious and error-prone but yet an integral part of the implementation of those many-body frameworks. Indeed, this symmetry reduction is a key step to advance modern simulations to higher accuracy since the use of symmetry-adapted tensors can decrease the computational complexity by orders of magnitude. While attempts have been made in the past to automate the (anti-) commutation rules linked to Fermionic and Bosonic algebras at play in the derivation of the working equations, there is no systematic account to achieve the same goal for their symmetry reduction. In this work, the first version of an automated tool performing graph-theory-based angular-momentum reduction is presented. Taking the symmetry-unrestricted expressions of a generic tensor network as an input, the code provides their angular-momentum-reduced form in an error-safe way in a matter of seconds. Several state-of-the-art many-body methods serve as examples to demonstrate the generality of the approach and to highlight the potential impact on the many-body community.

Funder

Nuclear Physics

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3